论文标题
基于样式转移的图像隐志
Image Steganography based on Style Transfer
论文作者
论文摘要
图像隐志是使用图像作为秘密通信的封面的艺术和科学。随着神经网络的发展,传统的图像隐肌更可能通过基于深度学习的ste藻来检测到。为了改善这一点,我们根据样式转移提出了图像隐志网络,并且可以将秘密消息的嵌入伪装成图像风格。我们在转换内容图像样式的同时嵌入了秘密信息。在潜在空间中,将秘密信息集成到封面图像的潜在表示中,以生成Stego图像,这与正常的风格化图像无法区分。它是一个没有预训练的端到端的无监督模型。基准数据集上的广泛实验证明了我们的隐化网络生成的Stego图像的可靠性,质量和安全性。
Image steganography is the art and science of using images as cover for covert communications. With the development of neural networks, traditional image steganography is more likely to be detected by deep learning-based steganalysis. To improve upon this, we propose image steganography network based on style transfer, and the embedding of secret messages can be disguised as image stylization. We embed secret information while transforming the content image style. In latent space, the secret information is integrated into the latent representation of the cover image to generate the stego images, which are indistinguishable from normal stylized images. It is an end-to-end unsupervised model without pre-training. Extensive experiments on the benchmark dataset demonstrate the reliability, quality and security of stego images generated by our steganographic network.