论文标题
PUTN:基于飞机的不平坦地形导航框架
PUTN: A Plane-fitting based Uneven Terrain Navigation Framework
论文作者
论文摘要
地面机器人的自主导航已被广泛用于室内结构化的2D环境中,但是在室外3D非结构化环境中,仍然存在许多挑战,尤其是在粗糙的,不均匀的地形中。本文提出了一个基于飞机拟合的不平衡地形导航框架(PUTN)来解决此问题。 PUTN的实施分为三个步骤。首先,基于迅速探索的随机树(RRT),提出了一种改进的基于样本的算法,称为平面拟合RRT*(PF-RRT*)以获得稀疏的轨迹。每个采样点对应于点云上的自定义遍历性索引和拟合平面。这些平面串联连接以形成可穿越的条带。其次,高斯过程回归用于生成从稀疏轨迹插值的密集轨迹的遍历,并将采样树用作训练集。最后,使用非线性模型预测控制(NMPC)进行本地计划。通过在成本函数中添加遍历性索引和不确定性,并将实时点云产生的障碍物添加到约束函数中,可以使用平稳的速度和强大的稳健性的安全运动计划算法。在实际情况下进行实验以验证该方法的有效性。源代码发布以供社区参考。
Autonomous navigation of ground robots has been widely used in indoor structured 2D environments, but there are still many challenges in outdoor 3D unstructured environments, especially in rough, uneven terrains. This paper proposed a plane-fitting based uneven terrain navigation framework (PUTN) to solve this problem. The implementation of PUTN is divided into three steps. First, based on Rapidly-exploring Random Trees (RRT), an improved sample-based algorithm called Plane Fitting RRT* (PF-RRT*) is proposed to obtain a sparse trajectory. Each sampling point corresponds to a custom traversability index and a fitted plane on the point cloud. These planes are connected in series to form a traversable strip. Second, Gaussian Process Regression is used to generate traversability of the dense trajectory interpolated from the sparse trajectory, and the sampling tree is used as the training set. Finally, local planning is performed using nonlinear model predictive control (NMPC). By adding the traversability index and uncertainty to the cost function, and adding obstacles generated by the real-time point cloud to the constraint function, a safe motion planning algorithm with smooth speed and strong robustness is available. Experiments in real scenarios are conducted to verify the effectiveness of the method. The source code is released for the reference of the community.