论文标题
部分可观测时空混沌系统的无模型预测
Attention-effective multiple instance learning on weakly stem cell colony segmentation
论文作者
论文摘要
检测诱导多能干细胞(IPSC)菌落通常需要精确提取菌落特征。但是,现有的计算机系统通过预处理菌落条件进行分类而依赖于轮廓的分割。为了最大化菌落条件分类的效率,我们在弱监督的设置中提出了多个实例学习(MIL)。它是在单个模型中设计的,可在不使用精确标记的样品的情况下产生菌落的弱分段和分类。作为一个单一模型,我们采用U-NET样卷积神经网络(CNN)来训练MIL菌落分类的二进制图像级标签。此外,为了指定感兴趣的对象,我们使用了一种简单的后处理方法。使用五倍的交叉验证和接收器操作特征(ROC)曲线比较了所提出的方法。 MIL-NET的最大准确性为95%,比常规方法高15%。此外,在不使用像素的地面真相图像的情况下,基于图像级标签来解释IPSC菌落位置的能力在菌落条件识别中更具吸引力和成本效益。
The detection of induced pluripotent stem cell (iPSC) colonies often needs the precise extraction of the colony features. However, existing computerized systems relied on segmentation of contours by preprocessing for classifying the colony conditions were task-extensive. To maximize the efficiency in categorizing colony conditions, we propose a multiple instance learning (MIL) in weakly supervised settings. It is designed in a single model to produce weak segmentation and classification of colonies without using finely labeled samples. As a single model, we employ a U-net-like convolution neural network (CNN) to train on binary image-level labels for MIL colonies classification. Furthermore, to specify the object of interest we used a simple post-processing method. The proposed approach is compared over conventional methods using five-fold cross-validation and receiver operating characteristic (ROC) curve. The maximum accuracy of the MIL-net is 95%, which is 15 % higher than the conventional methods. Furthermore, the ability to interpret the location of the iPSC colonies based on the image level label without using a pixel-wise ground truth image is more appealing and cost-effective in colony condition recognition.