论文标题

波动驱动的可塑性可以灵活地重新布线神经元组件

Fluctuation-driven plasticity allows for flexible rewiring of neuronal assemblies

论文作者

Devalle, Federico, Roxin, Alex

论文摘要

神经元回路中的突触连接受到突触前和突触后的尖峰活性的调节。这种突触可塑性过程的启发式模型可以为体外实验的结果提供极好的拟合,在体外实验中,前后突触后尖峰以受控方式变化。但是,通过拟合此类数据推断出的可塑性规则不可避免地不稳定,因为给定持续的突触后和突触后活动,突触将完全增强或降低。可以通过添加其他机制(例如稳态)来检查这种不稳定。在这里,我们考虑了可塑性规则本身稳定的另一种情况。在这种情况下,只有在及时和突触后活性变化时,例如当由时间变化的输入驱动时。我们研究此类输入的特征如何塑造神经元电路模型中的复发突触连接。在振荡输入的情况下,所产生的结构受到与不同神经元之间的相位关系的强烈影响。在大型网络中,分布式阶段倾向于导致分层聚类。我们的结果可能与理解感官驱动的输入的影响有关,这些输入本质上是时间变化,对突触可塑性以及对学习和记忆的影响。

Synaptic connections in neuronal circuits are modulated by pre- and post-synaptic spiking activity. Heuristic models of this process of synaptic plasticity can provide excellent fits to results from in-vitro experiments in which pre- and post-synaptic spiking is varied in a controlled fashion. However, the plasticity rules inferred from fitting such data are inevitably unstable, in that given constant pre- and post-synaptic activity the synapse will either fully potentiate or depress. This instability can be held in check by adding additional mechanisms, such as homeostasis. Here we consider an alternative scenario in which the plasticity rule itself is stable. When this is the case, net potentiation or depression only occur when pre- and post-synaptic activity vary in time, e.g. when driven by time-varying inputs. We study how the features of such inputs shape the recurrent synaptic connections in models of neuronal circuits. In the case of oscillatory inputs, the resulting structure is strongly affected by the phase relationship between drive to different neurons. In large networks, distributed phases tend to lead to hierarchical clustering. Our results may be of relevance for understanding the effect of sensory-driven inputs, which are by nature time-varying, on synaptic plasticity, and hence on learning and memory.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源