论文标题
年龄结构的SIR动力学在建模COVID-19中的有用性
Usefulness of the Age-Structured SIR Dynamics in Modelling COVID-19
论文作者
论文摘要
我们研究了年龄结构化的SIR模型,这是在Covid-19的背景下,经典易感感染的被感染的(SIR)流行传播模型的变体。在此过程中,我们为模型提供了理论基础,执行经验验证,并发现模型在近似任意流行中的局限性。我们首先建立定义年龄结构的SIR模型的微分方程作为连续时间马尔可夫过程的平均场景限制,该过程模拟了在涉及随机,异步相互作用的社交网络上流行病扩散的模型。然后,我们表明,随着人口规模的增长,当且仅当网络的边缘更新速率接近Infinity时,任何一对年龄段的感染率都会收敛到其平均场限制,并且我们展示了均值场收敛的速率如何取决于边缘更新率。然后,我们提出了一种系统识别方法,用于对模型的双线性ODE的参数估计,并通过生成东京县中受感染个体的年龄数量的轨迹来测试日本Covid-19数据集上的模型性能,超过365天。在此过程中,我们还开发了一种算法来识别大流行的不同\ textit {pass},每个阶段都与一组唯一的接触率相关联。我们的结果表明,生成的轨迹与观察到的轨迹之间有很好的一致性。
We examine the age-structured SIR model, a variant of the classical Susceptible-Infected-Recovered (SIR) model of epidemic propagation, in the context of COVID-19. In doing so, we provide a theoretical basis for the model, perform an empirical validation, and discover the limitations of the model in approximating arbitrary epidemics. We first establish the differential equations defining the age-structured SIR model as the mean-field limits of a continuous-time Markov process that models epidemic spreading on a social network involving random, asynchronous interactions. We then show that, as the population size grows, the infection rate for any pair of age groups converges to its mean-field limit if and only if the edge update rate of the network approaches infinity, and we show how the rate of mean-field convergence depends on the edge update rate. We then propose a system identification method for parameter estimation of the bilinear ODEs of our model, and we test the model performance on a Japanese COVID-19 dataset by generating the trajectories of the age-wise numbers of infected individuals in the prefecture of Tokyo for a period of over 365 days. In the process, we also develop an algorithm to identify the different \textit{phases} of the pandemic, each phase being associated with a unique set of contact rates. Our results show a good agreement between the generated trajectories and the observed ones.