论文标题

测试索引性和计算惠特和Gittins index in subupic时间

Testing Indexability and Computing Whittle and Gittins Index in Subcubic Time

论文作者

Gast, Nicolas, Gaujal, Bruno, Khun, Kimang

论文摘要

Whittle索引是Gittins索引的概括,为躁动不安的多臂土匪提供了非常有效的分配规则。在这项工作中,我们开发了一种算法来测试索引性并计算任何有限状态不安的匪徒臂的矮小索引。该算法在折扣和未缩放的情况下起作用,并且可以计算Gittins指数。我们的算法建立在三个工具上:(1)仔细表征链索,允许一个人从$(k -1)$(k -1)$ thimest递归计算最小的索引,并测试索引性,(2)使用Sherman -Morrison公式的使用,使该递归计算有效地使用sporad Matrix and(3),并将其用于(3)sporrix sportrix sportrix sportrix sportrix sportrix sportrix fortrix fordrix fordrix亚皮的复杂性。我们表明,Sherman-Morrison公式的有效利用导致了一种计算Whittle索引$(2/3)n^3 + O(n^3)$算术操作的算法,其中$ n $是手臂状态的数量。仔细使用快速矩阵乘法会导致第一个亚地铁算法计算Whittle或Gittins索引:通过使用当前最快的矩阵乘法,我们算法的理论复杂性为O(N^2.5286)。我们还开发了有效的算法实施,该算法可以在不到几秒钟内计算数千个州的马尔可夫链的指数。

Whittle index is a generalization of Gittins index that provides very efficient allocation rules for restless multi-armed bandits. In this work, we develop an algorithm to test the indexability and compute the Whittle indices of any finite-state restless bandit arm. This algorithm works in the discounted and non-discounted cases, and can compute Gittins index. Our algorithm builds on three tools: (1) a careful characterization of Whittle index that allows one to compute recursively the kth smallest index from the $(k - 1)$th smallest, and to test indexability, (2) the use of the Sherman-Morrison formula to make this recursive computation efficient, and (3) a sporadic use of the fastest matrix inversion and multiplication methods to obtain a subcubic complexity. We show that an efficient use of the Sherman-Morrison formula leads to an algorithm that computes Whittle index in $(2/3)n^3 + o(n^3)$ arithmetic operations, where $n$ is the number of states of the arm. The careful use of fast matrix multiplication leads to the first subcubic algorithm to compute Whittle or Gittins index: By using the current fastest matrix multiplication, the theoretical complexity of our algorithm is O(n^2.5286 ). We also develop an efficient implementation of our algorithm that can compute indices of Markov chains with several thousands of states in less than a few seconds.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源