论文标题
一些简单派生的图像
The images of some simple derivations
论文作者
论文摘要
在本文中,我们研究了多项式推导图像及其简单性之间的关系。我们证明了简单的Shamsuddin衍生物的图像不是Mathieu-Zhao空间。此外,我们还表明,维度三中的一些简单派生的图像不是Mathieu-Zhao空间。因此,我们猜测,在维度上的简单衍生图像大于一个不是Mathieu-Zhao空间。我们还证明,局部nilpotent推导的维度在大于一个的维度上并不简单。
In the paper, we study the relation between the images of polynomial derivations and their simplicity. We prove that the images of simple Shamsuddin derivations are not Mathieu-Zhao spaces. In addition, we also show that the images of some simple derivations in dimension three are not Mathieu-Zhao spaces. Thus, we conjecture that the images of simple derivations in dimension greater than one are not Mathieu-Zhao spaces. We also prove that locally nilpotent derivations are not simple in dimension greater than one.