论文标题
你什么时候变得如此聪明,哦,明智的呢?多模式多方对话中的讽刺解释
When did you become so smart, oh wise one?! Sarcasm Explanation in Multi-modal Multi-party Dialogues
论文作者
论文摘要
诸如讽刺之类的间接言论实现了人类交流中的话语目标。虽然比喻语言的间接性值得说话者实现某些实用目标,但AI代理人理解人类交流的这种特质是挑战。尽管讽刺识别是对话分析中的一个充分探索的话题,但是对于对话系统真正掌握了对话的先天含义并产生适当的回应,但简单地检测讽刺是不够的。解释其潜在的讽刺意味以捕捉其真正的本质至关重要。在这项工作中,我们研究了讽刺对话的话语结构,并提出了一项新的任务 - 对话中的讽刺解释(SED)。该任务设置为多模式和代码混合设置,旨在生成讽刺对话的自然语言解释。为此,我们策划了Wits,这是一个支持我们任务的新数据集。我们提出了MAF(模式意识融合),这是一种多模式上下文感知的关注和全局信息融合模块,以捕获多模式并将其用于基准WITS。拟议的注意模块超过了传统的多模式融合基线,并报告了几乎所有指标的最佳性能。最后,我们在定量和定性上进行了详细的分析。
Indirect speech such as sarcasm achieves a constellation of discourse goals in human communication. While the indirectness of figurative language warrants speakers to achieve certain pragmatic goals, it is challenging for AI agents to comprehend such idiosyncrasies of human communication. Though sarcasm identification has been a well-explored topic in dialogue analysis, for conversational systems to truly grasp a conversation's innate meaning and generate appropriate responses, simply detecting sarcasm is not enough; it is vital to explain its underlying sarcastic connotation to capture its true essence. In this work, we study the discourse structure of sarcastic conversations and propose a novel task - Sarcasm Explanation in Dialogue (SED). Set in a multimodal and code-mixed setting, the task aims to generate natural language explanations of satirical conversations. To this end, we curate WITS, a new dataset to support our task. We propose MAF (Modality Aware Fusion), a multimodal context-aware attention and global information fusion module to capture multimodality and use it to benchmark WITS. The proposed attention module surpasses the traditional multimodal fusion baselines and reports the best performance on almost all metrics. Lastly, we carry out detailed analyses both quantitatively and qualitatively.