论文标题
使用单电子盒子在硅中快速的高保真单拍读数
Fast high-fidelity single-shot readout of spins in silicon using a single-electron box
论文作者
论文摘要
量子处理器中读出系统的三个关键指标是测量速度,保真度和足迹。快速的高保真读数可以实现中路测量,这是许多动态算法的必要功能和量子误差校正,而较小的足迹有助于设计可扩展,高度连接的架构的设计,并与计算性能的相关增长。在这里,我们提出了两个互补的演示,即使用紧凑的,分散电荷传感器:射频频率单电子盒的快速高保真单次读数。尽管传感器需要比常规探测器更少的电极,但在最先进的旋转读数忠诚度中,在不到6 $μ$ s的情况下实现了99.2%。我们证明,与Josephson参数放大相结合,高损坏的高阻抗谐振器高度耦合到传感点,对实现最佳性能有助于。我们将Pauli自旋封锁比自旋依赖性隧道的益处量化为储层,这是这些读出方案中的自旋转换机制。我们的结果将分散电荷传感放在可伸缩的半导体自旋量子处理器的读数方法的最前沿。
Three key metrics for readout systems in quantum processors are measurement speed, fidelity and footprint. Fast high-fidelity readout enables mid-circuit measurements, a necessary feature for many dynamic algorithms and quantum error correction, while a small footprint facilitates the design of scalable, highly-connected architectures with the associated increase in computing performance. Here, we present two complementary demonstrations of fast high-fidelity single-shot readout of spins in silicon quantum dots using a compact, dispersive charge sensor: a radio-frequency single-electron box. The sensor, despite requiring fewer electrodes than conventional detectors, performs at the state-of-the-art achieving spin read-out fidelity of 99.2% in less than 6 $μ$s. We demonstrate that low-loss high-impedance resonators, highly coupled to the sensing dot, in conjunction with Josephson parametric amplification are instrumental in achieving optimal performance. We quantify the benefit of Pauli spin blockade over spin-dependent tunneling to a reservoir, as the spin-to-charge conversion mechanism in these readout schemes. Our results place dispersive charge sensing at the forefront of readout methodologies for scalable semiconductor spin-based quantum processors.