论文标题

通过学习分类器进行自适应模型预测控制

Adaptive Model Predictive Control by Learning Classifiers

论文作者

Guzman, Rel, Oliveira, Rafael, Ramos, Fabio

论文摘要

随机模型预测控制一直是许多机器人任务的成功且可靠的控制框架,因为系统动力学模型略有不准确或存在环境干扰。尽管取得了成功,但仍不清楚如何在存在模型参数不确定性和异质噪声的情况下最好地将控制参数最佳地调整为当前任务。在本文中,我们提出了一种自适应MPC变体,该变体通过利用贝叶斯优化(BO)和经典的预期改进获取功能来自动估算控制和模型参数。我们利用最近的结果表明,可以通过密度比估计来重新重新重新估算,这可以通过简单地学习分类器来有效地近似。然后将其集成到模型预测路径积分控制框架中,为各种具有挑战性的机器人任务提供可靠的控制器。我们证明了模型不确定性和机器人操纵任务下的经典控制问题的方法。

Stochastic model predictive control has been a successful and robust control framework for many robotics tasks where the system dynamics model is slightly inaccurate or in the presence of environment disturbances. Despite the successes, it is still unclear how to best adjust control parameters to the current task in the presence of model parameter uncertainty and heteroscedastic noise. In this paper, we propose an adaptive MPC variant that automatically estimates control and model parameters by leveraging ideas from Bayesian optimisation (BO) and the classical expected improvement acquisition function. We leverage recent results showing that BO can be reformulated via density ratio estimation, which can be efficiently approximated by simply learning a classifier. This is then integrated into a model predictive path integral control framework yielding robust controllers for a variety of challenging robotics tasks. We demonstrate the approach on classical control problems under model uncertainty and robotics manipulation tasks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源