论文标题

关节方向尺度空间表示形式的相似性等效线性转换

Similarity Equivariant Linear Transformation of Joint Orientation-Scale Space Representations

论文作者

Zhang, Xinhua, Williams, Lance R.

论文摘要

卷积通常定义为在一个或多个变量的函数上的线性操作,该变量与移位的通勤。小组卷积将概念推广到代表更通用的几何变换以及与这些转换通勤的组元素功能的线性操作。由于相似性转换是保留形状的图像上最通用的几何变换,因此与相似性转换等效的组卷积是保留最通用的线性线性运算符。由于相似性转换具有四个自由参数,因此在四维关节方向尺度空间上定义了组卷积。尽管现有关于模棱两可的线性运算符的工作仅限于离散组,但相似性组是连续的。在本文中,我们将线性运算符描述为与连续相似性转换的离散表示形式。这是通过使用函数的基础来实现的,即可转移可转移的量表。这些风车函数在对数尺度维度的方向维度和拉普拉斯变换中使用傅立叶级数,以形成空间局部函数的基础,这些函数可以连续插值以定位,方向和比例。尽管通常相对于视觉计算,但我们通过使用它来计算由粒子在速度下进行布朗尼运动的颗粒所追踪的封闭轮廓的形状模棱两可的分布来提出其效用的初始演示。轮廓受到点和线末端的限制,代表了众所周知的虚幻轮廓诱导模式。

Convolution is conventionally defined as a linear operation on functions of one or more variables which commutes with shifts. Group convolution generalizes the concept to linear operations on functions of group elements representing more general geometric transformations and which commute with those transformations. Since similarity transformation is the most general geometric transformation on images that preserves shape, the group convolution that is equivariant to similarity transformation is the most general shape preserving linear operator. Because similarity transformations have four free parameters, group convolutions are defined on four-dimensional, joint orientation-scale spaces. Although prior work on equivariant linear operators has been limited to discrete groups, the similarity group is continuous. In this paper, we describe linear operators on discrete representations that are equivariant to continuous similarity transformation. This is achieved by using a basis of functions that is it joint shiftable-twistable-scalable. These pinwheel functions use Fourier series in the orientation dimension and Laplace transform in the log-scale dimension to form a basis of spatially localized functions that can be continuously interpolated in position, orientation and scale. Although this result is potentially significant with respect to visual computation generally, we present an initial demonstration of its utility by using it to compute a shape equivariant distribution of closed contours traced by particles undergoing Brownian motion in velocity. The contours are constrained by sets of points and line endings representing well known bistable illusory contour inducing patterns.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源