论文标题

漂移减少导航,具有可解释的功能

Drift Reduced Navigation with Deep Explainable Features

论文作者

Omama, Mohd, Sriraman, Sundar Sripada Venugopalaswamy, Chinchali, Sandeep, Singh, Arun Kumar, Krishna, K. Madhava

论文摘要

现代的自动驾驶汽车(AV)通常依靠视觉,激光雷达,甚至基于雷达的同时定位和映射(SLAM)框架来精确定位和导航。但是,当AVS观察到几乎没有视觉上不同的特征或由于动态障碍而导致的障碍时,现代大满贯框架通常会导致不可接受的高水平漂移(即定位误差)。本文认为,将漂移最小化必须是AV运动计划中的关键逃避者,这要求AV采取积极的控制决策,以朝着功能丰富的区域迈进,同时还将常规控制成本降至最低。为此,我们首先引入了一个新型的数据驱动的感知模块,该模块观察LIDAR点云和估算值的特征/区域,AV必须导航以进行漂移最小化。然后,我们引入了一个可解释的模型预测控制器(MPC),该模型将AV移至此类功能丰富的区域,同时避免视觉遮挡并优雅地交易漂移和控制成本。与基准方法相比,我们对最先进的CARLA模拟器中有挑战性的动态场景的实验表明,我们的方法将漂移降至76.76%。

Modern autonomous vehicles (AVs) often rely on vision, LIDAR, and even radar-based simultaneous localization and mapping (SLAM) frameworks for precise localization and navigation. However, modern SLAM frameworks often lead to unacceptably high levels of drift (i.e., localization error) when AVs observe few visually distinct features or encounter occlusions due to dynamic obstacles. This paper argues that minimizing drift must be a key desiderata in AV motion planning, which requires an AV to take active control decisions to move towards feature-rich regions while also minimizing conventional control cost. To do so, we first introduce a novel data-driven perception module that observes LIDAR point clouds and estimates which features/regions an AV must navigate towards for drift minimization. Then, we introduce an interpretable model predictive controller (MPC) that moves an AV toward such feature-rich regions while avoiding visual occlusions and gracefully trading off drift and control cost. Our experiments on challenging, dynamic scenarios in the state-of-the-art CARLA simulator indicate our method reduces drift up to 76.76% compared to benchmark approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源