论文标题
Simmatch:半监督学习,相似性匹配
SimMatch: Semi-supervised Learning with Similarity Matching
论文作者
论文摘要
在计算机视觉和机器学习研究社区中,很少有标记数据的学习是一个长期存在的问题。在本文中,我们引入了一个新的半监督学习框架SimMatch,该框架同时考虑了语义相似性和实例相似性。在SimMatch中,一致性正则化将应用于语义级别和实例级别。鼓励同一实例的不同增强观点具有相同的阶级预测和相似的相似性关系。接下来,我们实例化了标记的内存缓冲区,以完全利用实例级别的地面真相标签,并弥合语义和实例相似性之间的差距。最后,我们提出了\ textit {展开}和\ textit {contregation}操作,该操作允许这两个相似之处相互转换。这样,可以将语义和实例伪标签相互传播以产生更高质量和可靠的匹配目标。广泛的实验结果表明,Simmatch改善了不同基准数据集和不同设置中半监督学习任务的性能。值得注意的是,在400个训练时代,Simmatch的训练达到67.2 \%,而ImageNet上的1 \%和10 \%标记的示例的74.4 \%TOP-1精度具有优于基线方法,并且比以前的半纯粹学习框架更好。代码和预训练模型可在https://github.com/kylezheng1997/simmatch上找到。
Learning with few labeled data has been a longstanding problem in the computer vision and machine learning research community. In this paper, we introduced a new semi-supervised learning framework, SimMatch, which simultaneously considers semantic similarity and instance similarity. In SimMatch, the consistency regularization will be applied on both semantic-level and instance-level. The different augmented views of the same instance are encouraged to have the same class prediction and similar similarity relationship respected to other instances. Next, we instantiated a labeled memory buffer to fully leverage the ground truth labels on instance-level and bridge the gaps between the semantic and instance similarities. Finally, we proposed the \textit{unfolding} and \textit{aggregation} operation which allows these two similarities be isomorphically transformed with each other. In this way, the semantic and instance pseudo-labels can be mutually propagated to generate more high-quality and reliable matching targets. Extensive experimental results demonstrate that SimMatch improves the performance of semi-supervised learning tasks across different benchmark datasets and different settings. Notably, with 400 epochs of training, SimMatch achieves 67.2\%, and 74.4\% Top-1 Accuracy with 1\% and 10\% labeled examples on ImageNet, which significantly outperforms the baseline methods and is better than previous semi-supervised learning frameworks. Code and pre-trained models are available at https://github.com/KyleZheng1997/simmatch.