论文标题

dzhumadildaev支架:换向器的隐藏超对称性和Amitsur-Levitzki-型身份

The Dzhumadildaev brackets: a hidden supersymmetry of commutators and the Amitsur-Levitzki--type identities

论文作者

Lebedev, Alexei, Leites, Dimitry

论文摘要

基里洛夫(Kirillov)概括了矩阵的Amitsur-levitzki身份:由Kostant进行简单的有限维级代数,由Kirillov(后来由Kontsevich,Molev,Ovsienko和Udalova加入),以简单的效率与vectorial Algebras一起使用,以供vectorial like for polynomial cobir and polynomial and the and the the and the the the and the the and polynomial and pcira和pincira和pincira和pincira和pincira和pincira和pincir,以及orthosymplectic lie superalgebra $ \ mathfrak {osp}(1 | n)$。 Dzhumadildaev考虑了反对称器形成的代数,并发现了换向器的隐藏超对称性,从而改变了这些结果的关注焦点。我们概述了这些结果及其可能的概括(开放问题)。

The Amitsur--Levitzki identity for matrices was generalized in several directions: by Kostant for simple finite-dimensional Lie algebras, by Kirillov (later joined by Kontsevich, Molev, Ovsienko, and Udalova) for simple vectorial Lie algebras with polynomial coefficients, and by Gie, Pinczon, and Ushirobira for the orthosymplectic Lie superalgebra $\mathfrak{osp}(1|n)$. Dzhumadildaev switched the focus of attention in these results by considering the algebra formed by antisymmetrizors and discovered a hidden supersymmetry of commutators. We overview these results and their possible generalizations (open problems).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源