论文标题
概率约束贝叶逆转蒸腾冷却
Probabilistic Constrained Bayesion Inversion for Transpiration Cooling
论文作者
论文摘要
为了在火箭燃烧室等应用中进行安全操作,材料需要冷却以避免物质损坏。在这里,蒸腾冷却是一种有希望的冷却技术。大量研究调查了模拟和评估复杂冷却机制的可能性。一个自然出现的问题是确保安全操作所需的冷却液量。为了研究这一点,我们介绍了一种方法,该方法使用反问题确定雷诺数的后验概率分布,并在参数不确定性下限制系统的最高温度。从数学上讲,这种偶然的不平等约束是通过系统的普遍混乱来处理的。后验分布将通过不同的马尔可夫链蒙特卡洛方法进行评估。在二维蒸腾冷却模型上提出了一种用于约束情况的新方法。
To enable safe operations in applications such as rocket combustion chambers, the materials require cooling to avoid material damage. Here, transpiration cooling is a promising cooling technique. Numerous studies investigate possibilities to simulate and evaluate the complex cooling mechanism. One naturally arising question is the amount of coolant required to ensure a safe operation. To study this, we introduce an approach that determines the posterior probability distribution of the Reynolds number using an inverse problem and constraining the maximum temperature of the system under parameter uncertainties. Mathematically, this chance inequality constraint is dealt with by a generalized Polynomial Chaos expansion of the system. The posterior distribution will be evaluated by different Markov Chain Monte Carlo based methods. A novel method for the constrained case is proposed and tested among others on two-dimensional transpiration cooling models.