论文标题

稀疏回归的混合成分推断:fMRI BOLD的神经元信号的介绍和应用

Mixture Components Inference for Sparse Regression: Introduction and Application for Estimation of Neuronal Signal from fMRI BOLD

论文作者

Pidnebesna, Anna, Fajnerova, Iveta, Horacek, Jiri, Hlinka, Jaroslav

论文摘要

稀疏的线性回归方法在内,包括众所周知的拉索和丹齐格选择器在工程实践中已无处不在,包括医学成像。除其他任务外,它们已成功地用于从功能磁共振数据中估算神经元活性,而没有事先了解刺激或激活时间,并利用了对局部神经元活性的血液动力学反应的近似知识。这些方法通过生成具有不同稀疏性的参数解决方案家族来起作用,其中最终选择是使用信息标准做出的。我们提出了一种新颖的方法,该方法没有从正规解决方案的家族中选择单个选项,而是利用了整个稀疏回归解决方案的家庭。也就是说,它们的整体提供了每个时间点激活概率的第一个近似值,并与有条件神经元活性分布一起估计了浓度变化的混合物理论,它们是贝叶斯分类器的输入,最终在每个时间点上决定激活的真实性。我们在广泛的数值模拟中显示,与在一系列现实情况下的标准方法相比,这种新方法的性能优惠。这主要是由于避免过度拟合和不足的拟合,通常会基于稀疏回归与模型选择方法(包括校正后的Akaike信息标准)结合使用解决方案。最终在选定的fMRI任务数据集中记录了这一优势。

Sparse linear regression methods including the well-known LASSO and the Dantzig selector have become ubiquitous in the engineering practice, including in medical imaging. Among other tasks, they have been successfully applied for the estimation of neuronal activity from functional magnetic resonance data without prior knowledge of the stimulus or activation timing, utilizing an approximate knowledge of the hemodynamic response to local neuronal activity. These methods work by generating a parametric family of solutions with different sparsity, among which an ultimate choice is made using an information criteria. We propose a novel approach, that instead of selecting a single option from the family of regularized solutions, utilizes the whole family of such sparse regression solutions. Namely, their ensemble provides a first approximation of probability of activation at each time-point, and together with the conditional neuronal activity distributions estimated with the theory of mixtures with varying concentrations, they serve as the inputs to a Bayes classifier eventually deciding on the verity of activation at each time-point. We show in extensive numerical simulations that this new method performs favourably in comparison with standard approaches in a range of realistic scenarios. This is mainly due to the avoidance of overfitting and underfitting that commonly plague the solutions based on sparse regression combined with model selection methods, including the corrected Akaike Information Criterion. This advantage is finally documented in selected fMRI task datasets.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源