论文标题
具有亚临界紫外线奇异性的二极管模型的哈密顿量
Hamiltonians for polaron models with subcritical ultraviolet singularities
论文作者
论文摘要
我们在非差异量子场理论中处理极化型模型的紫外线问题。假设颗粒和田地的分散关系在无穷大时具有相同的生长,我们涵盖了所有亚临界(可超呈超明确)相互作用。没有截止的哈密顿量作为通过有限迭代程序获得的显式自我接合操作员。截止汉密尔顿人在扰动近似值减去地面能量后,以强烈的回避意义收敛到该操作员。
We treat the ultraviolet problem for polaron-type models in nonrelativistic quantum field theory. Assuming that the dispersion relations of particles and the field have the same growth at infinity, we cover all subcritical (superrenormalisable) interactions. The Hamiltonian without cutoff is exhibited as an explicit self-adjoint operator obtained by a finite iteration procedure. The cutoff Hamiltonians converge to this operator in the strong resolvent sense after subtraction of a perturbative approximation for the ground-state energy.