论文标题
S5CL:通过层次对比度学习统一完全监督,自我监督和半监督的学习
S5CL: Unifying Fully-Supervised, Self-Supervised, and Semi-Supervised Learning Through Hierarchical Contrastive Learning
论文作者
论文摘要
在计算病理学中,我们经常面临大量注释和大量未标记的数据。解决此问题的一种方法是半监督的学习,通常将其分为自我监督的借口任务和随后的模型进行微调。在这里,我们通过引入S5CL,这是一个统一的统一框架,该框架是针对完全监督,自学和半监督的学习,将这一两阶段培训压缩为一个培训。由于定义了标记,未标记和伪标记的图像的三个对比损失,S5CL可以学习反映距离关系的层次结构的特征表示:相似的图像和增强物嵌入了最接近的距离,其次是同一类的不同图像,而来自不同类别的图像则具有最大的距离。此外,S5CL使我们能够灵活地结合这些损失以适应不同的情况。我们对两个公共组织病理学数据集的框架的评估在稀疏标签的情况下显示出强烈的改善:对于H&E染色的结直肠癌数据集,与监督的跨层损失相比,准确性增加了多达9%;对于来自白血病患者血液涂片的单个白细胞的高度不平衡的数据集,F1分数最多增加了6%。
In computational pathology, we often face a scarcity of annotations and a large amount of unlabeled data. One method for dealing with this is semi-supervised learning which is commonly split into a self-supervised pretext task and a subsequent model fine-tuning. Here, we compress this two-stage training into one by introducing S5CL, a unified framework for fully-supervised, self-supervised, and semi-supervised learning. With three contrastive losses defined for labeled, unlabeled, and pseudo-labeled images, S5CL can learn feature representations that reflect the hierarchy of distance relationships: similar images and augmentations are embedded the closest, followed by different looking images of the same class, while images from separate classes have the largest distance. Moreover, S5CL allows us to flexibly combine these losses to adapt to different scenarios. Evaluations of our framework on two public histopathological datasets show strong improvements in the case of sparse labels: for a H&E-stained colorectal cancer dataset, the accuracy increases by up to 9% compared to supervised cross-entropy loss; for a highly imbalanced dataset of single white blood cells from leukemia patient blood smears, the F1-score increases by up to 6%.