论文标题

联合时间vertex分数傅立叶变换

Joint Time-Vertex Fractional Fourier Transform

论文作者

Alikaşifoğlu, Tuna, Kartal, Bünyamin, Özgünay, Eray, Koç, Aykut

论文摘要

图形信号处理(GSP)通过利用图形顶点定义的图形信号来促进对非欧国域域上的高维数据的分析。除静态数据外,每个顶点还可以提供连续的时间序列信号,将图形信号转换为每个顶点上的时间序列信号。联合时间范围傅立叶变换(JFT)框架提供了光谱分析功能,可以分析这些联合时间维克斯信号。类似于分数傅立叶变换(FRT)扩展了普通的傅立叶变换(FT),我们引入了关节时代的分数傅立叶变换(JFRT)作为JFT的概括。 JFRT通过将傅立叶分析扩展到时间和顶点域中的分数阶来实现分数分析。从理论上讲,我们证明JFRT概括了JFT并维护诸如索引添加性,可逆性,对身份的降低以及特定图形拓扑的单位性等属性。此外,我们在JFRT域中得出了基于Tikhonov的正规化DeNo,确保了稳健且举止良好的解决方案。关于合成和现实世界数据集的全面数值实验突出了JFRT在超出最先进方法的变态和聚类任务中的有效性。

Graph signal processing (GSP) facilitates the analysis of high-dimensional data on non-Euclidean domains by utilizing graph signals defined on graph vertices. In addition to static data, each vertex can provide continuous time-series signals, transforming graph signals into time-series signals on each vertex. The joint time-vertex Fourier transform (JFT) framework offers spectral analysis capabilities to analyze these joint time-vertex signals. Analogous to the fractional Fourier transform (FRT) extending the ordinary Fourier transform (FT), we introduce the joint time-vertex fractional Fourier transform (JFRT) as a generalization of JFT. The JFRT enables fractional analysis for joint time-vertex processing by extending Fourier analysis to fractional orders in both temporal and vertex domains. We theoretically demonstrate that JFRT generalizes JFT and maintains properties such as index additivity, reversibility, reduction to identity, and unitarity for specific graph topologies. Additionally, we derive Tikhonov regularization-based denoising in the JFRT domain, ensuring robust and well-behaved solutions. Comprehensive numerical experiments on synthetic and real-world datasets highlight the effectiveness of JFRT in denoising and clustering tasks that outperform state-of-the-art approaches.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源