论文标题
无注释的无注释恢复网络
An Annotation-free Restoration Network for Cataractous Fundus Images
论文作者
论文摘要
白内障是全球视力丧失的主要原因。开发恢复算法是为了提高白内障眼图像的可读性,以增加白内障患者的诊断和治疗的确定性。不幸的是,注释的要求限制了这些算法在诊所中的应用。本文提出了一个网络,以恢复注释的网络底部眼底图像(ARCNET),以增强恢复的临床实用性。在ARCNET中,注释是不必要的,其中从眼底图像中提取高频组件以替换视网膜结构保存中的分割。从合成的图像中学到了恢复模型,并适用于真实白内障图像。实施广泛的实验以验证ARCNET的性能和有效性。使用ARCNET针对最先进的算法实现了有利的性能,并且Arcnet促进了白内障患者的眼底疾病的诊断。在没有带注释的数据的情况下正确恢复白内障图像的能力有望拟议的算法出色的临床实用性。
Cataracts are the leading cause of vision loss worldwide. Restoration algorithms are developed to improve the readability of cataract fundus images in order to increase the certainty in diagnosis and treatment for cataract patients. Unfortunately, the requirement of annotation limits the application of these algorithms in clinics. This paper proposes a network to annotation-freely restore cataractous fundus images (ArcNet) so as to boost the clinical practicability of restoration. Annotations are unnecessary in ArcNet, where the high-frequency component is extracted from fundus images to replace segmentation in the preservation of retinal structures. The restoration model is learned from the synthesized images and adapted to real cataract images. Extensive experiments are implemented to verify the performance and effectiveness of ArcNet. Favorable performance is achieved using ArcNet against state-of-the-art algorithms, and the diagnosis of ocular fundus diseases in cataract patients is promoted by ArcNet. The capability of properly restoring cataractous images in the absence of annotated data promises the proposed algorithm outstanding clinical practicability.