论文标题

在学习的Riemannian流形上产生反应性运动

Reactive Motion Generation on Learned Riemannian Manifolds

论文作者

Beik-Mohammadi, Hadi, Hauberg, Søren, Arvanitidis, Georgios, Neumann, Gerhard, Rozo, Leonel

论文摘要

近几十年来,运动学习的进步使机器人能够获得新技能并适应结构化和非结构化环境中的看不见条件。在实践中,运动学习方法捕获相关模式,并将其调整为新条件,例如避免动态障碍物或可变目标。在本文中,我们从Riemannian歧管的角度研究了机器人运动学习范式。我们认为,可以通过人类的示范来学习里曼尼亚的流形,其中大地测量学是自然运动技能。大地测量是使用我们新颖的变异自动编码器(VAE)生产的学习的riemannian度量产生的,该度量尤其旨在恢复全斑点的最终效用状态和关节空间配置。此外,我们提出了一种技术,用于通过使用障碍感的环境指标重塑学习的歧管,来促进直立的最终效果/多LIMB障碍。使用这些大地学产生的运动自然可能会导致多个解决任务,这些任务尚未明确证明。我们使用7多型机器人操纵器在任务空间和关节空间方案中进行了广泛的测试。我们证明我们的方法能够根据人类操作员证明的复杂运动模式学习和产生运动技能。此外,我们评估了几种避免障碍策略,并在多模式设置中产生轨迹。

In recent decades, advancements in motion learning have enabled robots to acquire new skills and adapt to unseen conditions in both structured and unstructured environments. In practice, motion learning methods capture relevant patterns and adjust them to new conditions such as dynamic obstacle avoidance or variable targets. In this paper, we investigate the robot motion learning paradigm from a Riemannian manifold perspective. We argue that Riemannian manifolds may be learned via human demonstrations in which geodesics are natural motion skills. The geodesics are generated using a learned Riemannian metric produced by our novel variational autoencoder (VAE), which is especially intended to recover full-pose end-effector states and joint space configurations. In addition, we propose a technique for facilitating on-the-fly end-effector/multiple-limb obstacle avoidance by reshaping the learned manifold using an obstacle-aware ambient metric. The motion generated using these geodesics may naturally result in multiple-solution tasks that have not been explicitly demonstrated previously. We extensively tested our approach in task space and joint space scenarios using a 7-DoF robotic manipulator. We demonstrate that our method is capable of learning and generating motion skills based on complicated motion patterns demonstrated by a human operator. Additionally, we assess several obstacle avoidance strategies and generate trajectories in multiple-mode settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源