论文标题

时间知识的复杂进化模式学习图形推理

Complex Evolutional Pattern Learning for Temporal Knowledge Graph Reasoning

论文作者

Li, Zixuan, Guan, Saiping, Jin, Xiaolong, Peng, Weihua, Lyu, Yajuan, Zhu, Yong, Bai, Long, Li, Wei, Guo, Jiafeng, Cheng, Xueqi

论文摘要

时间知识图(TKG)是对应于不同时间戳的kg序列。 TKG推理旨在鉴于历史KG序列,将来预测未来的潜在事实。该任务的一个关键是从这些序列中挖掘并了解事实的进化模式。进化模式在两个方面很复杂,多样性和时间变化。 TKG推理的现有模型集中于建模固定长度的事实序列,该序列无法发现长度变化的复杂进化模式。此外,这些模型都是离线训练的,从那时起,它不能很好地适应进化模式的变化。因此,我们提出了一个称为复杂进化网络(CEN)的新模型,该模型使用长度感知的卷积神经网络(CNN)通过易于缺乏的课程学习策略来处理不同长度的进化模式。此外,我们建议在在线设置下学习该模型,以便它可以随着时间的推移而适应进化模式的变化。广泛的实验表明,CEN在传统的离线和拟议的在线设置下都可以进行大量的性能改善。

A Temporal Knowledge Graph (TKG) is a sequence of KGs corresponding to different timestamps. TKG reasoning aims to predict potential facts in the future given the historical KG sequences. One key of this task is to mine and understand evolutional patterns of facts from these sequences. The evolutional patterns are complex in two aspects, length-diversity and time-variability. Existing models for TKG reasoning focus on modeling fact sequences of a fixed length, which cannot discover complex evolutional patterns that vary in length. Furthermore, these models are all trained offline, which cannot well adapt to the changes of evolutional patterns from then on. Thus, we propose a new model, called Complex Evolutional Network (CEN), which uses a length-aware Convolutional Neural Network (CNN) to handle evolutional patterns of different lengths via an easy-to-difficult curriculum learning strategy. Besides, we propose to learn the model under the online setting so that it can adapt to the changes of evolutional patterns over time. Extensive experiments demonstrate that CEN obtains substantial performance improvement under both the traditional offline and the proposed online settings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源