论文标题
阈值前分数敏感性函数:Holomorphy和响应公式
Pre-threshold fractional susceptibility function: holomorphy and response formula
论文作者
论文摘要
对于某些具有负施华兹衍生物的平滑的单峰家族,我们构建了一组collet-ceckmann和次要的经常性参数$ω$,其补体集合的衰减密度足够快,其指数混合与均匀的速率发生。我们使用这种结构来建立物流家族的真实分数易感函数的全体形状,在大于一个大于一个的半径磁盘中,用于分化指数$ 0 \leη<1/2 $,这是Baladi和Smania最近猜想的。我们还获得了分数响应公式。
For certain smooth unimodal families with negative Schwarzian derivative, we construct a set of Collet-Eckmann and subexponentially recurrent parameters $Ω$, whose complement set has sufficiently fast decaying density, on which exponential mixing with uniform rates occurs. We use this construction to establish holomorphy of the true fractional susceptibility function of the logistic family, in a disk of radius larger than one, for differentiation index $0\leη<1/2$, as recently conjectured by Baladi and Smania. We also obtain a fractional response formula.