论文标题

机器学习和宇宙学

Machine Learning and Cosmology

论文作者

Dvorkin, Cora, Mishra-Sharma, Siddharth, Nord, Brian, Villar, V. Ashley, Avestruz, Camille, Bechtol, Keith, Ćiprijanović, Aleksandra, Connolly, Andrew J., Garrison, Lehman H., Narayan, Gautham, Villaescusa-Navarro, Francisco

论文摘要

基于机器学习的方法最近在宇宙学的许多角落都大量侵害。通过此过程,出现了新的计算工具,有关数据收集,模型开发,分析和发现的新观点以及新的社区和教育途径。尽管进步迅速,但在宇宙学和机器学习的交集中的巨大潜力仍未开发。在这份白皮书中,我们总结了与机器学习在宇宙学中的应用有关的当前和正在进行的发展,并提供了一系列建议,旨在通过技术发展以及促进新兴社区的培养在未来十年中最大程度地发挥这些新兴工具的科学影响。

Methods based on machine learning have recently made substantial inroads in many corners of cosmology. Through this process, new computational tools, new perspectives on data collection, model development, analysis, and discovery, as well as new communities and educational pathways have emerged. Despite rapid progress, substantial potential at the intersection of cosmology and machine learning remains untapped. In this white paper, we summarize current and ongoing developments relating to the application of machine learning within cosmology and provide a set of recommendations aimed at maximizing the scientific impact of these burgeoning tools over the coming decade through both technical development as well as the fostering of emerging communities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源