论文标题

社会节:人类轨迹预测使用时间段潜在

SocialVAE: Human Trajectory Prediction using Timewise Latents

论文作者

Xu, Pei, Hayet, Jean-Bernard, Karamouzas, Ioannis

论文摘要

预测行人运动对于人类行为分析以及安全有效的人类代理相互作用至关重要。但是,尽管取得了重大进展,但对于捕获人类导航决策的不确定性和多模式的现有方法仍然具有挑战性。在本文中,我们提出了SocialVae,这是一种新颖的人类轨迹预测方法。社会节的核心是一种时间上的变性自动编码器架构,它利用随机复发的神经网络进行预测,结合社会注意力机制和向后的后近似值,以更好地提取行人导航策略。我们表明,社交活动改善了几个步行轨迹预测基准的最新性能,包括ETH/UCY基准,Stanford Drone DataSet和Sportvu NBA运动数据集。代码可在以下网址找到:https://github.com/xupei0610/socialvae。

Predicting pedestrian movement is critical for human behavior analysis and also for safe and efficient human-agent interactions. However, despite significant advancements, it is still challenging for existing approaches to capture the uncertainty and multimodality of human navigation decision making. In this paper, we propose SocialVAE, a novel approach for human trajectory prediction. The core of SocialVAE is a timewise variational autoencoder architecture that exploits stochastic recurrent neural networks to perform prediction, combined with a social attention mechanism and a backward posterior approximation to allow for better extraction of pedestrian navigation strategies. We show that SocialVAE improves current state-of-the-art performance on several pedestrian trajectory prediction benchmarks, including the ETH/UCY benchmark, Stanford Drone Dataset, and SportVU NBA movement dataset. Code is available at: https://github.com/xupei0610/SocialVAE.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源