论文标题

对抗性使用阻尼和堆叠的学识渊博的表示

Adversarial Learned Fair Representations using Dampening and Stacking

论文作者

Knobbout, Max

论文摘要

随着我们日常生活中的越来越多的决定变得自动化,需要提高机器学习算法的需求会增加。在公平表示学习中,我们的任务是找到对敏感变量进行审查的数据的适当表示。最近的工作旨在通过对抗性学习来学习公平的表现。本文通过引入一种新颖的算法来基于这项工作,该算法使用抑制和堆叠来学习对抗性公平表示。结果表明,我们的算法在审查和重建方面的早期工作都改善了。

As more decisions in our daily life become automated, the need to have machine learning algorithms that make fair decisions increases. In fair representation learning we are tasked with finding a suitable representation of the data in which a sensitive variable is censored. Recent work aims to learn fair representations through adversarial learning. This paper builds upon this work by introducing a novel algorithm which uses dampening and stacking to learn adversarial fair representations. Results show that that our algorithm improves upon earlier work in both censoring and reconstruction.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源