论文标题

使用LPV-MPC的自主轮载轨迹跟踪控制

Autonomous Wheel Loader Trajectory Tracking Control Using LPV-MPC

论文作者

Song, Ruitao, Ye, Zhixian, Wang, Liyang, He, Tianyi, Zhang, Liangjun

论文摘要

在本文中,我们提出了一种系统的方法,用于对自主车轮装载机的高性能和有效的轨迹跟踪控制。使用车轮加载器的非线性动态模型,非线性模型预测控制(MPC)用于离线轨迹计划中,以获得高性能状态控制轨迹,同时满足状态和控制约束。在跟踪控制中,非线性模型嵌入到线性参数变化(LPV)模型中,LPV-MPC策略用于实现快速的在线计算和良好的跟踪性能。为了证明LPV-MPC的有效性和优势,我们测试并比较了高保真模拟环境中的三种模型预测控制策略。有了计划中的轨迹,模拟了三种跟踪控制策略LPV-MPC,非线性MPC和LTI-MPC,并以计算负担和跟踪性能的角度进行比较。 LPV-MPC可以比常规LTI-MPC获得更好的性能,因为在LPV模型中捕获了更准确的标称系统动力学。此外,LPV-MPC的跟踪性能稍差,但比非线性MPC的计算效率得到了极大提高。可以在此处找到一个由我们的自主轮装载机完成的带有加载周期的视频,请参见:https://youtu.be/qbnfs_wzkkka。

In this paper, we present a systematic approach for high-performance and efficient trajectory tracking control of autonomous wheel loaders. With the nonlinear dynamic model of a wheel loader, nonlinear model predictive control (MPC) is used in offline trajectory planning to obtain a high-performance state-control trajectory while satisfying the state and control constraints. In tracking control, the nonlinear model is embedded into a Linear Parameter Varying (LPV) model and the LPV-MPC strategy is used to achieve fast online computation and good tracking performance. To demonstrate the effectiveness and the advantages of the LPV-MPC, we test and compare three model predictive control strategies in the high-fidelity simulation environment. With the planned trajectory, three tracking control strategies LPV-MPC, nonlinear MPC, and LTI-MPC are simulated and compared in the perspectives of computational burden and tracking performance. The LPV-MPC can achieve better performance than conventional LTI-MPC because more accurate nominal system dynamics are captured in the LPV model. In addition, LPV-MPC achieves slightly worse tracking performance but tremendously improved computational efficiency than nonlinear MPC. A video with loading cycles completed by our autonomous wheel loader in the simulation environment can be found here: https://youtu.be/QbNfS_wZKKA.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源