论文标题
约瑟夫森参数系统中多方纠缠的产生和结构
Generation and structuring of multipartite entanglement in Josephson parametric system
论文作者
论文摘要
量子相关性是基于量子现象的高级信息处理中的重要资源。值得注意的是,量子场的真空状态可以充当产生多部分量子纠缠的关键要素。在这项工作中,我们通过使用两个连续的泵色调之间的相位差来实现真正的三方纠缠状态及其控制。我们证明了对三方双方状态的协方差矩阵子空间的控制。此外,通过在三色调泵送方案中优化相位关系,我们探索了\ textit {generalized} h-graph state($ \ mathscr {\ tilde {h}}} $ - graph)的真正四分法纠缠。我们的方案为纠缠结构提供了全面的控制工具箱,并允许我们首次证明微波模式的真正的四分之一纠缠。所有实验结果均通过非线性量子Langevin方程的数值模拟进行了验证。我们设想,多泵配置促进的量子资源为使用参数微波腔提供了增强的量子数据处理前景。
Quantum correlations are a vital resource in advanced information processing based on quantum phenomena. Remarkably, the vacuum state of a quantum field may act as a key element for the generation of multipartite quantum entanglement. In this work, we achieve generation of genuine tripartite entangled state and its control by the use of the phase difference between two continuous pump tones. We demonstrate control of the subspaces of the covariance matrix for tripartite bisqueezed state. Furthermore, by optimizing the phase relationships in a three-tone pumping scheme we explore genuine quadripartite entanglement of a \textit{generalized} H-graph state ($\mathscr{\tilde{H}}$-graph). Our scheme provides a comprehensive control toolbox for the entanglement structure and allows us to demonstrate, for first time to our knowledge, genuine quadripartite entanglement of microwave modes. All experimental results are verified with numerical simulations of the nonlinear quantum Langevin equation. We envision that quantum resources facilitated by multi-pump configurations offer enhanced prospects for quantum data processing using parametric microwave cavities.