论文标题

Riemannian最小表面方程的逆问题

An inverse problem for the Riemannian minimal surface equation

论文作者

Cârstea, Cătălin I., Lassas, Matti, Liimatainen, Tony, Oksanen, Lauri

论文摘要

在本文中,我们考虑确定嵌入在Riemannian歧管$σ\ times \ Mathbb {r} $中的最小表面。我们表明,如果$σ$是具有边界的二维Riemannian歧管,那么最小表面方程的相关dirichlet到neumann映射的知识确定了等轴测图的$σ$。

In this paper we consider determining a minimal surface embedded in a Riemannian manifold $Σ\times \mathbb{R}$. We show that if $Σ$ is a two dimensional Riemannian manifold with boundary, then the knowledge of the associated Dirichlet-to-Neumann map for the minimal surface equation determine $Σ$ up to an isometry.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源