论文标题
EVA2.0:调查开放域中的中国对话系统,并进行大规模预培训
EVA2.0: Investigating Open-Domain Chinese Dialogue Systems with Large-Scale Pre-Training
论文作者
论文摘要
大规模的预训练在构建开放域对话系统方面表现出色。但是,以前的作品主要集中于展示和评估发布的对话模型的对话性能,而忽略了有关强大类似人类的聊天机器人的一些关键因素的讨论,尤其是在中国场景中。在本文中,我们进行了广泛的实验,以研究这些爆炸不足的因素,包括数据质量控制,模型架构设计,培训方法和解码策略。我们提出了EVA2.0,这是一种具有28亿个参数的大规模预培训的中国对话模型,将使我们的模型和代码公开可用。自动和人类评估表明,EVA2.0的表现明显优于其他开源对应物。我们还通过介绍一些失败案例并在中国大规模的中国开放域对话系统上提出了一些未来的研究指示,讨论了这项工作的局限性。
Large-scale pre-training has shown remarkable performance in building open-domain dialogue systems. However, previous works mainly focus on showing and evaluating the conversational performance of the released dialogue model, ignoring the discussion of some key factors towards a powerful human-like chatbot, especially in Chinese scenarios. In this paper, we conduct extensive experiments to investigate these under-explored factors, including data quality control, model architecture designs, training approaches, and decoding strategies. We propose EVA2.0, a large-scale pre-trained open-domain Chinese dialogue model with 2.8 billion parameters, and will make our models and codes publicly available. Automatic and human evaluations show that EVA2.0 significantly outperforms other open-source counterparts. We also discuss the limitations of this work by presenting some failure cases and pose some future research directions on large-scale Chinese open-domain dialogue systems.