论文标题
Elberto:自我监督的常识性学习问题回答
elBERto: Self-supervised Commonsense Learning for Question Answering
论文作者
论文摘要
常识性问题回答需要关于日常情况,原因和效果的推理。通常,现有方法首先检索外部证据,然后使用这些证据执行常识性推理。在本文中,我们提出了一个自我监督的双向编码器表示,共同框架(ELBETO)框架,与现成的QA模型体系结构兼容。该框架包括五项自制任务,以迫使该模型完全利用包含丰富常识的上下文中的其他训练信号。这些任务包括一项新颖的对比关系学习任务,以鼓励模型区分逻辑上的对比上下文,一个新的拼图拼图任务,要求该模型在长上下文中推断逻辑链,以及三个经典的SSL任务,以维持预先训练的模型语言编码能力。在代表性的WIQA,COSMOSQA和RECLOR数据集上,Elberto优于所有其他方法,包括利用明确的图形推理和外部知识检索的方法。此外,Elberto在段落外面取得了重大改进和无效的问题,而简单的词汇相似性比较无济于事,这表明它成功地学习了常识并能够在给定动态环境时利用它。
Commonsense question answering requires reasoning about everyday situations and causes and effects implicit in context. Typically, existing approaches first retrieve external evidence and then perform commonsense reasoning using these evidence. In this paper, we propose a Self-supervised Bidirectional Encoder Representation Learning of Commonsense (elBERto) framework, which is compatible with off-the-shelf QA model architectures. The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense. The tasks include a novel Contrastive Relation Learning task to encourage the model to distinguish between logically contrastive contexts, a new Jigsaw Puzzle task that requires the model to infer logical chains in long contexts, and three classic SSL tasks to maintain pre-trained models language encoding ability. On the representative WIQA, CosmosQA, and ReClor datasets, elBERto outperforms all other methods, including those utilizing explicit graph reasoning and external knowledge retrieval. Moreover, elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help, indicating that it successfully learns commonsense and is able to leverage it when given dynamic context.