论文标题
autoSDF:用于3D完成,重建和发电的先验
AutoSDF: Shape Priors for 3D Completion, Reconstruction and Generation
论文作者
论文摘要
强大的先验使我们能够使用不足的信息进行推理。在本文中,我们提出了3D形状的自回归先验,以求解多模式3D任务,例如形状完成,重建和发电。我们将3D形状上的分布建模为非顺序自回归分布,这是3D形状的离散,低维,类似于符号网格的潜在表示。这使我们能够在3D形状上表示分布,该分布是根据任意锚定的查询位置的信息来调节的,因此在此类任意设置中执行形状完成(例如,仅给出后腿的视图生成完整的椅子)。我们还表明,可以利用学识渊博的自动回归先验来实现有条件的任务,例如单视图重建和基于语言的生成。这是通过学习特定于任务的幼稚条件来实现的,该条件可以通过对最小配对数据训练的轻型模型来近似。我们使用定量和定性评估验证了提出方法的有效性,并表明所提出的方法的表现优于针对各个任务的专门最新方法。具有代码和视频可视化的项目页面可以在https://yccyencheng.github.io/autosdf/上找到。
Powerful priors allow us to perform inference with insufficient information. In this paper, we propose an autoregressive prior for 3D shapes to solve multimodal 3D tasks such as shape completion, reconstruction, and generation. We model the distribution over 3D shapes as a non-sequential autoregressive distribution over a discretized, low-dimensional, symbolic grid-like latent representation of 3D shapes. This enables us to represent distributions over 3D shapes conditioned on information from an arbitrary set of spatially anchored query locations and thus perform shape completion in such arbitrary settings (e.g., generating a complete chair given only a view of the back leg). We also show that the learned autoregressive prior can be leveraged for conditional tasks such as single-view reconstruction and language-based generation. This is achieved by learning task-specific naive conditionals which can be approximated by light-weight models trained on minimal paired data. We validate the effectiveness of the proposed method using both quantitative and qualitative evaluation and show that the proposed method outperforms the specialized state-of-the-art methods trained for individual tasks. The project page with code and video visualizations can be found at https://yccyenchicheng.github.io/AutoSDF/.