论文标题

在线事件流的分析:预测下一个异常检测活动

The Analysis of Online Event Streams: Predicting the Next Activity for Anomaly Detection

论文作者

Lee, Suhwan, Lu, Xixi, Reijers, Hajo A.

论文摘要

过程挖掘中的异常检测重点是识别过程执行中的异常情况或事件。最终的诊断用于提供防止欺诈行为的措施,并提出提出改善过程合规性和安全性的建议。大多数现有技术都集中在离线环境中检测异常情况。但是,要及时确定潜在的异常并立即进行对策,有必要实时在线检测事件级异常。在本文中,我们建议使用下一个活动预测方法解决在线事件异常检测问题。更具体地说,我们研究了ML模型(例如RF和XGBOOST)和深层模型(例如LSTM)的使用,以预测下一活性的概率,并考虑预测的事件不太可能是异常。我们将这些预测性异常检测方法与在在线环境中的四种经典无监督的异常检测方法(例如隔离森林和LOF)进行了比较。我们的评估表明,使用ML模型的提出方法倾向于使用深层模型胜过该方法,而两种方法在检测异常事件时的经典无监督方法都优于经典的方法。

Anomaly detection in process mining focuses on identifying anomalous cases or events in process executions. The resulting diagnostics are used to provide measures to prevent fraudulent behavior, as well as to derive recommendations for improving process compliance and security. Most existing techniques focus on detecting anomalous cases in an offline setting. However, to identify potential anomalies in a timely manner and take immediate countermeasures, it is necessary to detect event-level anomalies online, in real-time. In this paper, we propose to tackle the online event anomaly detection problem using next-activity prediction methods. More specifically, we investigate the use of both ML models (such as RF and XGBoost) and deep models (such as LSTM) to predict the probabilities of next-activities and consider the events predicted unlikely as anomalies. We compare these predictive anomaly detection methods to four classical unsupervised anomaly detection approaches (such as Isolation forest and LOF) in the online setting. Our evaluation shows that the proposed method using ML models tends to outperform the one using a deep model, while both methods outperform the classical unsupervised approaches in detecting anomalous events.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源