论文标题
单数矢量和$ψ$ -Dirichlet数字在功能字段上
Singular Vectors and $ψ$-Dirichlet Numbers over Function Field
论文作者
论文摘要
我们表明,在有限字段上,功能字段中唯一的$ψ$ -Dirichlet号是有理功能,与$ \ Mathbb {r} $中的$ψ$ -Dirichlet号码不同。我们还证明,在正面特征领域,有许多完全非理性的刻度向量在二次表面中具有较大的均匀指数。
We show that the only $ψ$-Dirichlet numbers in a function field over a finite field are rational functions, unlike $ψ$-Dirichlet numbers in $\mathbb{R}$. We also prove that there are uncountably many totally irrational singular vectors with large uniform exponent in quadratic surfaces over a positive characteristic field.