论文标题

域平衡的像素级自身标签用于域自适应语义分段

Class-Balanced Pixel-Level Self-Labeling for Domain Adaptive Semantic Segmentation

论文作者

Li, Ruihuang, Li, Shuai, He, Chenhang, Zhang, Yabin, Jia, Xu, Zhang, Lei

论文摘要

域自适应语义分割旨在通过监督源域数据学习模型,并对未标记的目标域产生令人满意的密集预测。这项具有挑战性的任务的一种流行解决方案是自我训练,它选择了目标样本上的高分预测作为训练的伪标签。但是,产生的伪标签通常包含很多噪音,因为该模型偏向源域以及多数类别。为了解决上述问题,我们建议直接探索目标域数据的内在像素分布,而不是在很大程度上依赖源域。具体而言,我们同时群集像素并用所获得的群集分配整流伪标签。此过程以在线方式完成,因此伪标签可以与分割模型共同发展,而无需额外的训练。为了克服长尾类别的类不平衡问题,我们采用了分配对准技术来强制群集分配的边际类别分布,以接近伪标签。所提出的方法,即平衡的像素级自标记(CPSL),将目标域而不是最先进的方法提高了分段性能,尤其是在长尾类别上。

Domain adaptive semantic segmentation aims to learn a model with the supervision of source domain data, and produce satisfactory dense predictions on unlabeled target domain. One popular solution to this challenging task is self-training, which selects high-scoring predictions on target samples as pseudo labels for training. However, the produced pseudo labels often contain much noise because the model is biased to source domain as well as majority categories. To address the above issues, we propose to directly explore the intrinsic pixel distributions of target domain data, instead of heavily relying on the source domain. Specifically, we simultaneously cluster pixels and rectify pseudo labels with the obtained cluster assignments. This process is done in an online fashion so that pseudo labels could co-evolve with the segmentation model without extra training rounds. To overcome the class imbalance problem on long-tailed categories, we employ a distribution alignment technique to enforce the marginal class distribution of cluster assignments to be close to that of pseudo labels. The proposed method, namely Class-balanced Pixel-level Self-Labeling (CPSL), improves the segmentation performance on target domain over state-of-the-arts by a large margin, especially on long-tailed categories.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源