论文标题

在远程魔术循环器上6

On distance magic circulants of valency 6

论文作者

Miklavič, Štefko, Šparl, Primož

论文摘要

$ n $的图$γ=(v,e)$是{\ em远程魔术},如果它承认了$ \ ell \ el \ colon v \ to \ {1,2,\ ldots,n \} $的c \ el \ ell \ colon v \ to \ ldots,n \} $,存在一个正integer $κ$κ$ \ um \ sum_ el \ ul)对于所有顶点$ v \ in V $,其中$ n(v)$是$ v $的邻里。 %众所周知,常规距离魔术图一定具有甚至价值。 一个{\ em循环}是一个图表,该图周期为自动形态,将其顶点置换。在本文中,我们研究了距离价值$ 6 $的远程魔术循环器。我们获得了一些必要的和一些足够的条件,可以使价值$ 6 $的循环系统成为远程魔术,从而找到了几个无限的示例家庭。本文的综合结果提供了所有距离的魔术循环器$ 6 $的部分分类。特别是,我们将价值远距离循环器分类为$ 6 $,其订单不可划分$ 12 $。

A graph $Γ= (V,E)$ of order $n$ is {\em distance magic} if it admits a bijective labeling $\ell \colon V \to \{1,2, \ldots, n\}$ of its vertices for which there exists a positive integer $κ$ such that $\sum_{u \in N(v)} \ell(u) = κ$ for all vertices $v \in V$, where $N(v)$ is the neighborhood of $v$. %It is well known that a regular distance magic graph is necessarily of even valency. A {\em circulant} is a graph admitting an automorphism cyclically permuting its vertices. In this paper we study distance magic circulants of valency $6$. We obtain some necessary and some sufficient conditions for a circulant of valency $6$ to be distance magic, thereby finding several infinite families of examples. The combined results of this paper provide a partial classification of all distance magic circulants of valency $6$. In particular, we classify distance magic circulants of valency $6$, whose order is not divisible by $12$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源