论文标题
用unruh-dewitt探测器探测对静态间距的热效应
Probing thermal effects on static spacetimes with Unruh-DeWitt detectors
论文作者
论文摘要
由于缺乏成熟的量子重力理论,我认为弯曲的空间上的自由标量,量子场,以深入了解量子与重力现象之间的相互作用。我采用Unruh-Dewitt检测器方法来探测静态,非全球双曲线空间的热量子效应。在这种情况下,所有物理可观察的物品都取决于在不采取实验的情况下通常无法单身的边界条件的选择。尽管如此,该框架应用的框架承认了一大批(Robin)边界条件,并授予我们具有物理上敏感的动力学和局部Hadamard形式的两点功能。我发现,在BTZ黑洞上的热状态或四个维度的无质量拓扑黑洞,抗unruh/hawking效应并不明显。尽管这些统计效应的身体意义仍然令人困惑,但我的工作证实了它们与KMS条件的非平凡关系,并揭示了时空维度在其表现中的关键影响。在全球单极管上,我发现,对于无质量的最小耦合场的过渡速率,热波动和能量密度仅在奇异性下保持有限,仅在Dirichlet边界条件下。对于共同耦合的磁场,尽管所有边界条件的能量密度都在分歧,但过渡速率和热波动在单极处消失。表明即使有无限的能量,如果量子场不波动,也不会自发发射。此外,我明确地在Lifshitz拓扑黑洞上为地面和热状态构建了两点功能,在这种Lorentz破裂环境中为将来的探索奠定了基础。
In the lack of a full-fledged theory of quantum gravity, I consider free, scalar, quantum fields on curved spacetimes to gain insight into the interaction between quantum and gravitational phenomena. I employ the Unruh-DeWitt detector approach to probe thermal, quantum effects on static, non-globally hyperbolic spacetimes. In this context, all physical observables depend on the choice of a boundary condition that cannot be singled-out, in general, without resorting to an experiment. Notwithstanding, the framework applied admits a large family of (Robin) boundary conditions and grants us physically-sensible dynamics and two-point functions of local Hadamard form. I discover that the anti-Unruh/Hawking effects are not manifest for thermal states on the BTZ black hole, nor on massless topological black holes of four dimensions. Whilst the physical significance of these statistical effects remains puzzling, my work corroborates their non-trivial relation with the KMS condition and reveals the pivotal influence of the spacetime dimension in their manifestation. On global monopoles, I find that for massless minimally coupled fields the transition rate, the thermal fluctuations and the energy density remain finite at the singularity only for Dirichlet boundary condition. For conformally coupled fields, although the energy density diverges for all boundary conditions, the transition rate and the thermal fluctuations vanish at the monopole; indicating that even if there is infinite energy, no spontaneous emission occur if the quantum field is not fluctuating. Moreover, I explicitly construct two-point functions for ground and thermal states on Lifshitz topological black holes, setting the ground for future explorations in this Lorentz breaking context.