论文标题

通过知识蒸馏,通过神经网络模仿量子动力学

Emulating Quantum Dynamics with Neural Networks via Knowledge Distillation

论文作者

Yao, Yu, Cao, Chao, Haas, Stephan, Agarwal, Mahak, Khanna, Divyam, Abram, Marcin

论文摘要

高保真量子动力学模拟器可用于预测复杂物理系统的时间演变。在这里,我们介绍了一个有效的培训框架,用于构建基于机器的模拟器。我们的方法基于知识蒸馏的概念,并使用课程学习的要素。它通过构建一组简单但丰富的物理培训示例(课程)来起作用。模拟器使用这些示例来学习描述量子系统时间演变(知识蒸馏)的一般规则。目标不仅是获得高质量的预测,还要研究模拟器如何学习基本问题的物理学的过程。这使我们能够发现有关物理系统,检测对称性并衡量贡献物理过程的相对重要性的新事实。我们通过训练人工神经网络来预测通过潜在景观传播的量子波包的时间演变来说明这种方法。我们关注的是模拟器如何从简单培训示例的课程中学习量子动态规则的问题,以及在哪种程度上可以概括获得的知识以解决更具挑战性的案例。

High-fidelity quantum dynamics emulators can be used to predict the time evolution of complex physical systems. Here, we introduce an efficient training framework for constructing machine learning-based emulators. Our approach is based on the idea of knowledge distillation and uses elements of curriculum learning. It works by constructing a set of simple, but rich-in-physics training examples (a curriculum). These examples are used by the emulator to learn the general rules describing the time evolution of a quantum system (knowledge distillation). The goal is not only to obtain high-quality predictions, but also to examine the process of how the emulator learns the physics of the underlying problem. This allows us to discover new facts about the physical system, detect symmetries, and measure relative importance of the contributing physical processes. We illustrate this approach by training an artificial neural network to predict the time evolution of quantum wave packages propagating through a potential landscape. We focus on the question of how the emulator learns the rules of quantum dynamics from the curriculum of simple training examples and to which extent it can generalize the acquired knowledge to solve more challenging cases.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源