论文标题
强度$ g^{(2)} $ - 随机光纤激光器中的相关性:随机矩阵理论方法
Intensity $g^{(2)}$-correlations in random fiber lasers: A random matrix theory approach
论文作者
论文摘要
我们提出了一种基于随机矩阵理论的新方法,以计算随机激光器和随机光纤激光器发出的辐射的时间二阶强度相关函数$ g^{(2)}(t)$。这些系统的多模特性,在活性介质中具有相关程度的混乱程度,大量随机散射中心极大地阻碍了$ g^{(2)}(t)$的计算。在这里,我们在光子系统中首次申请了Ginibre的非Hermitian随机矩阵集合的通用统计属性,以获得$ g^{(2)}(t)$。对于基于ERBIUM的随机纤维激光器的几种激发能力的时间分辨测量,发现了极好的一致性。我们还讨论了随机矩阵方法的扩展,以解决具有各种哈密顿对称性的普通无序光子系统的统计特性。
We propose a new approach based on random matrix theory to calculate the temporal second-order intensity correlation function $g^{(2)}(t)$ of the radiation emitted by random lasers and random fiber lasers. The multimode character of these systems, with a relevant degree of disorder in the active medium, and large number of random scattering centers substantially hinder the calculation of $g^{(2)}(t)$. Here we apply for the first time in a photonic system the universal statistical properties of Ginibre's non-Hermitian random matrix ensemble to obtain $g^{(2)}(t)$. Excellent agreement is found with time-resolved measurements for several excitation powers of an erbium-based random fiber laser. We also discuss the extension of the random matrix approach to address the statistical properties of general disordered photonic systems with various Hamiltonian symmetries.