论文标题

强烈的后部收缩率通过Wasserstein动力学

Strong posterior contraction rates via Wasserstein dynamics

论文作者

Dolera, Emanuele, Favaro, Stefano, Mainini, Edoardo

论文摘要

在贝叶斯统计中,后验收率(PCR)量化后验分布集中在真实模型的任意小社区的速度,以适当的方式,因为样本量进入无穷大。在本文中,我们开发了一种新的PCR方法,就函数参数空间的强规范距离而言。我们方法对我们的方法至关重要的是,当地的Lipschitz-continition在后部分布中结合了Wasserstein距离的动态表述,这使PCR与数学分析,概率和统计数据中引起的某些经典问题之间有一个有趣的联系定理和加权庞加莱 - 韦尔辛格常数的估计。我们首先在常规的无限多指数族中介绍PCR上的定理,该模型利用了该模型的足够统计数据,然后将这种定理扩展到通用主导的模型。这些结果依赖于新型技术的开发来评估无限利益的无限维度中的拉普拉斯积分和加权的庞加莱 - 韦尔辛格常数。所提出的方法应用于常规参数模型,多项式模型,有限维和无限差异的逻辑 - 高斯模型以及无限维线性线性回归。通常,我们的方法在有限维模型中导致最佳PCR,而对于无限维模型,它明确显示了先前的分布如何影响PCR。

In Bayesian statistics, posterior contraction rates (PCRs) quantify the speed at which the posterior distribution concentrates on arbitrarily small neighborhoods of a true model, in a suitable way, as the sample size goes to infinity. In this paper, we develop a new approach to PCRs, with respect to strong norm distances on parameter spaces of functions. Critical to our approach is the combination of a local Lipschitz-continuity for the posterior distribution with a dynamic formulation of the Wasserstein distance, which allows to set forth an interesting connection between PCRs and some classical problems arising in mathematical analysis, probability and statistics, e.g., Laplace methods for approximating integrals, Sanov's large deviation principles in the Wasserstein distance, rates of convergence of mean Glivenko-Cantelli theorems, and estimates of weighted Poincaré-Wirtinger constants. We first present a theorem on PCRs for a model in the regular infinite-dimensional exponential family, which exploits sufficient statistics of the model, and then extend such a theorem to a general dominated model. These results rely on the development of novel techniques to evaluate Laplace integrals and weighted Poincaré-Wirtinger constants in infinite-dimension, which are of independent interest. The proposed approach is applied to the regular parametric model, the multinomial model, the finite-dimensional and the infinite-dimensional logistic-Gaussian model and the infinite-dimensional linear regression. In general, our approach leads to optimal PCRs in finite-dimensional models, whereas for infinite-dimensional models it is shown explicitly how the prior distribution affect PCRs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源