论文标题

RGB深度融合GAN用于室内深度完成

RGB-Depth Fusion GAN for Indoor Depth Completion

论文作者

Wang, Haowen, Wang, Mingyuan, Che, Zhengping, Xu, Zhiyuan, Qiao, Xiuquan, Qi, Mengshi, Feng, Feifei, Tang, Jian

论文摘要

室内深度传感器捕获的原始深度图像通常由于固有的局限性(例如无法感知透明的对象和有限的距离范围)而具有广泛的缺失深度值范围。不完整的深度图负担了许多下游视觉任务,并且已经提出了减轻此问题的深度完成方法的增加。尽管大多数现有方法可以从稀疏和均匀采样的深度图中生成准确的密集深度图,但它们不适合补充缺失深度值的大连续区域,这是常见和关键的。在本文中,我们设计了一个新颖的两分支端到端融合网络,该网络将一对RGB和不完整的深度图像作为输入,以预测一个密集且完整的深度图。第一个分支采用编码器 - 编码器结构来从原始深度图中回归局部密集的深度值,并借助从RGB图像中提取的本地指导信息。在另一个分支中,我们建议RGB深度融合GAN将RGB图像传递到细粒的纹理深度图中。我们采用名为W-Adain的自适应融合模块来传播两个分支的功能,并附加了一个置信融合头,以融合分支的两个输出以获取最终深度图。对NYU-DEPTH V2和SUN RGB-D的广泛实验表明,我们提出的方法显然改善了深度完成性能,尤其是在伪造深度图的帮助下,尤其是在更现实的室内环境环境中。

The raw depth image captured by the indoor depth sensor usually has an extensive range of missing depth values due to inherent limitations such as the inability to perceive transparent objects and limited distance range. The incomplete depth map burdens many downstream vision tasks, and a rising number of depth completion methods have been proposed to alleviate this issue. While most existing methods can generate accurate dense depth maps from sparse and uniformly sampled depth maps, they are not suitable for complementing the large contiguous regions of missing depth values, which is common and critical. In this paper, we design a novel two-branch end-to-end fusion network, which takes a pair of RGB and incomplete depth images as input to predict a dense and completed depth map. The first branch employs an encoder-decoder structure to regress the local dense depth values from the raw depth map, with the help of local guidance information extracted from the RGB image. In the other branch, we propose an RGB-depth fusion GAN to transfer the RGB image to the fine-grained textured depth map. We adopt adaptive fusion modules named W-AdaIN to propagate the features across the two branches, and we append a confidence fusion head to fuse the two outputs of the branches for the final depth map. Extensive experiments on NYU-Depth V2 and SUN RGB-D demonstrate that our proposed method clearly improves the depth completion performance, especially in a more realistic setting of indoor environments with the help of the pseudo depth map.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源