论文标题

通过混合图神经网络改善医疗图像分割中的解剖学合理性:胸部X射线分析的应用

Improving anatomical plausibility in medical image segmentation via hybrid graph neural networks: applications to chest x-ray analysis

论文作者

Gaggion, Nicolás, Mansilla, Lucas, Mosquera, Candelaria, Milone, Diego H., Ferrante, Enzo

论文摘要

解剖学细分是医学图像计算中的一项基本任务,通常通过完全卷积的神经网络来解决,产生密集的分割面具。这些模型通常受损失函数(例如跨凝结或骰子)训练,它们假设像素是彼此独立的,因此忽略了拓扑错误和解剖矛盾。我们通过从像素级到图形表示,可以通过构造自然纳入解剖约束来解决此限制。为此,我们介绍了Hybridgnet,这是一种编码器描述器神经结构,利用标准卷积来用于图像特征编码和图形卷积神经网络(GCNN)来解释解剖结构的合理表示。我们还提出了一个新型的图像到图形跳动连接层,该层允许局部特征从标准的卷积块流向GCNN块,并表明它提高了分割精度。在各种域移动和图像遮挡场景中对所提出的体系结构进行了广泛的评估,并考虑了不同类型的人口统计域移位进行了审核。我们全面的实验设置将Hybridgnet与其他具有里程碑意义的基于标志性和像素的模型进行了比较,用于胸部X射线图像中的解剖分段,并表明它在其他模型往往失败的挑战性场景中产生了解剖学上合理的结果。

Anatomical segmentation is a fundamental task in medical image computing, generally tackled with fully convolutional neural networks which produce dense segmentation masks. These models are often trained with loss functions such as cross-entropy or Dice, which assume pixels to be independent of each other, thus ignoring topological errors and anatomical inconsistencies. We address this limitation by moving from pixel-level to graph representations, which allow to naturally incorporate anatomical constraints by construction. To this end, we introduce HybridGNet, an encoder-decoder neural architecture that leverages standard convolutions for image feature encoding and graph convolutional neural networks (GCNNs) to decode plausible representations of anatomical structures. We also propose a novel image-to-graph skip connection layer which allows localized features to flow from standard convolutional blocks to GCNN blocks, and show that it improves segmentation accuracy. The proposed architecture is extensively evaluated in a variety of domain shift and image occlusion scenarios, and audited considering different types of demographic domain shift. Our comprehensive experimental setup compares HybridGNet with other landmark and pixel-based models for anatomical segmentation in chest x-ray images, and shows that it produces anatomically plausible results in challenging scenarios where other models tend to fail.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源