论文标题
由轴突引导的光子可以在大脑中基于反向传播的学习
Photons guided by axons may enable backpropagation-based learning in the brain
论文作者
论文摘要
尽管在解释突触可塑性和神经元功能方面取得了长足的进步,但仍然缺少对大脑学习算法的完全理解。人工神经网络通过反向传播算法提供了强大的学习范式,该算法通过使用反馈连接来修改突触权重。反向传播需要通过网络层的层次进行广泛的信息传达。这被认为是生物学上令人难以置信的,尚不清楚是否可以在大脑中实现反向传播。在这里,我们建议由轴突引导的生物光子为大脑中信息向后传输提供了潜在的通道。实验证明了生物植物是在大脑中产生的,但其目的尚不清楚。我们建议,生物光子可以从每个突触后神经元传播到其突触前的神经元,以将所需的信息向后携带。为了反映生物量排放的随机特征,我们的模型包括教学信号的随机向后传播。我们证明,三层神经元网络可以使用我们提出的带有随机光子反馈的类似反向传播的算法来学习MNIST手写数字分类任务。我们对现实的限制进行了建模,并表明我们的系统仍会学习生物光子发射率低的任务,信息限制(每个光子)向后传输以及存在噪声光子的任务。我们的结果提出了生物光子的新功能,并为大脑向后传播提供了另一种机制。
Despite great advances in explaining synaptic plasticity and neuron function, a complete understanding of the brain's learning algorithms is still missing. Artificial neural networks provide a powerful learning paradigm through the backpropagation algorithm which modifies synaptic weights by using feedback connections. Backpropagation requires extensive communication of information back through the layers of a network. This has been argued to be biologically implausible and it is not clear whether backpropagation can be realized in the brain. Here we suggest that biophotons guided by axons provide a potential channel for backward transmission of information in the brain. Biophotons have been experimentally shown to be produced in the brain, yet their purpose is not understood. We propose that biophotons can propagate from each post-synaptic neuron to its pre-synaptic one to carry the required information backward. To reflect the stochastic character of biophoton emissions, our model includes the stochastic backward transmission of teaching signals. We demonstrate that a three-layered network of neurons can learn the MNIST handwritten digit classification task using our proposed backpropagation-like algorithm with stochastic photonic feedback. We model realistic restrictions and show that our system still learns the task for low rates of biophoton emission, information-limited (one bit per photon) backward transmission, and in the presence of noise photons. Our results suggest a new functionality for biophotons and provide an alternate mechanism for backward transmission in the brain.