论文标题
在协变量仪表中,Gluonic Leadwist操作员的重新归一化
Renormalization of gluonic leading-twist Operators in covariant Gauges
论文作者
论文摘要
我们提供了Yang-Mills理论中的Twist-Two操作员的插入,提供了Green功能重新归一化所需的量规变量运算符的全环结构。使用此结构,我们为任意紧凑的简单量规组有效的明确基础有效期为4循环订单。为了实现这一目标,我们采用了最初由Dixon和Taylor提出的广义量规对称性,该对称性在添加到Yang-Mills Lagrangian之后也与其运动方程成正比后产生。将这种对称性推广到广义的BRST对称性中,可以从BRST将军的单个精确操作员中产生幽灵操作员。我们表明我们的构建符合Joglekar和Lee的定理。我们进一步建立了一种广义的抗Brst对称性的存在,我们采用该对称性来得出幽灵和动作算子方程的异常尺寸矩阵之间的非平凡关系。出于演示目的,我们采用形式主义来计算Gluonic分裂功能的N = 2,4 Mellin矩,最多4个循环,其N = 6 Mellin矩矩高达3个循环,我们还利用了背景场形式主义的其他简化。
We provide the all-loop structure of gauge-variant operators required for the renormalisation of Green's functions with insertions of twist-two operators in Yang-Mills theory. Using this structure we work out an explicit basis valid up to 4-loop order for an arbitrary compact simple gauge group. To achieve this we employ a generalised gauge symmetry, originally proposed by Dixon and Taylor, which arises after adding to the Yang-Mills Lagrangian also operators proportional to its equation of motion. Promoting this symmetry to a generalised BRST symmetry allows to generate the ghost operator from a single exact operator in the BRST-generalised sense. We show that our construction complies with the theorems by Joglekar and Lee. We further establish the existence of a generalised anti-BRST symmetry which we employ to derive non-trivial relations among the anomalous dimension matrices of ghost and equation-of-motion operators. For the purpose of demonstration we employ the formalism to compute the N=2,4 Mellin moments of the gluonic splitting function up to 4 loops and its N=6 Mellin moment up to 3 loops, where we also take advantage of additional simplifications of the background field formalism.