论文标题
Square课上Hurwitz班级的一致性
Congruences of Hurwitz class numbers on square classes
论文作者
论文摘要
我们扩展了我们较早工作的全体形态投影论点,以证明赫维兹班级数字的非孤晶一致性是一个新颖的分裂性结果。这一结果使我们能够建立Ramanujan型的一致性,以在Square类上的Hurwitz类号码,其中Holomorphic Case Case与Radu对分区一致性的先前工作。我们提供两个申请。第一个应用程序展示了Ramanujan型的一致性的共同划分特征。第二个应用程序提供了二分法的二分法,在班级数字数量的班级数量与Ramanujan型的一致性之间提供了二分法。
We extend a holomorphic projection argument of our earlier work to prove a novel divisibility result for non-holomorphic congruences of Hurwitz class numbers. This result allows us to establish Ramanujan-type congruences for Hurwitz class numbers on square classes, where the holomorphic case parallels previous work by Radu on partition congruences. We offer two applications. The first application demonstrates common divisibility features of Ramanujan-type congruences for Hurwitz class numbers. The second application provides a dichotomy between congruences for class numbers of imaginary quadratic fields and Ramanujan-type congruences for Hurwitz class numbers.