论文标题
在Vaisman流形上的双重联系
Bismut connection on Vaisman manifolds
论文作者
论文摘要
研究了对Vaisman歧管上的Bismut连接的全能。我们证明,如果$ m^{2n} $具有Vaisman结构,那么bismut Connection的整体组包含在u $(n-1)$中。我们明确计算该组的特定类型的流形,即Solvmanifolds和某些经典的HOPF歧管。
The holonomy of the Bismut connection on Vaisman manifolds is studied. We prove that if $M^{2n}$ is endowed with a Vaisman structure, then the holonomy group of the Bismut connection is contained in U$(n-1)$. We compute explicitly this group for particular types of manifolds, namely, solvmanifolds and some classical Hopf manifolds.