论文标题

快速toeplitz特征值计算,连接插值 - 拆卸矩阵算法和简单环形构想:预处理设置

Fast Toeplitz eigenvalue computations, joining interpolation-extrapolation matrix-less algorithms and simple-loop conjectures: the preconditioned setting

论文作者

Bogoya, Manuel, Serra-Cappizano, Stefano, Vassalos, Paris

论文摘要

在适当的技术假设下,简单的循环理论允许推断出各种类型的渐近扩展,以针对toeplitz矩阵的特征值$ t_ {n}(n}(f)$ f $生成$ t_ {n}^{ - 1}(g)t_ {n}(l)$,带有$ l,g $ real-valued,$ g $ nonnementegation,几乎无处不在。独立且在温和的假设下,$ f = \ frac {l} {g} $是均匀的,超过$ [0,π] $的单调性,无基质算法是为快速的特征值计算而开发的,用于快速的特征值计算,用于上面的大型预处理矩阵,在基于Matrix的较高效率之后:在Matrix中的较高效率: $ g \ equiv 1 $,再加上推断的想法,因此,我们猜想的是,简单的循环理论必须在这种新的环境中扩展,正如数字强烈暗示的那样。我们将注意力集中在可变的变化上,随后是新变量的非元素扩展,我们考虑了新的Matrix-new Matrix-new Matrix-new Matrix-new Algoriths case for当前的案例。与文献中已经提出的无基质程序相比,数值实验显示到机器精度和相同的线性计算成本的精度要高得多。

Under appropriate technical assumptions, the simple-loop theory allows to deduce various types of asymptotic expansions for the eigenvalues of Toeplitz matrices $T_{n}(f)$ generated by a function $f$, unfortunately, such a theory is not available in the preconditioning setting, that is for matrices of the form $T_{n}^{-1}(g)T_{n}(l)$ with $l,g$ real-valued, $g$ nonnnegative and not identically zero almost everywhere. Independently and under the milder hypothesis that $f=\frac{l}{g}$ is even and monotonic over $[0,π]$, matrix-less algorithms have been developed for the fast eigenvalue computation of large preconditioned matrices of the type above, within a linear complexity in the matrix order: behind the high efficiency of such algorithms there are the expansions as in the case $g\equiv 1$, combined with the extrapolation idea, and hence we conjecture that the simple-loop theory has to be extended in such a new setting, as the numerics strongly suggest.Here we focus our attention on a change of variable, followed by the asymptotic expansion of the new variable, and we consider new matrix-less algorithms ad hoc for the current case. Numerical experiments show a much higher precision till machine precision and the same linear computation cost, when compared with the matrix-less procedures already proposed in the literature.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源