论文标题

在相关的Kagome晶格抗Fiferromagnet中发现电荷密度波

Discovery of charge density wave in a correlated kagome lattice antiferromagnet

论文作者

Teng, Xiaokun, Chen, Lebing, Ye, Feng, Rosenberg, Elliott, Liu, Zhaoyu, Yin, Jia-Xin, Jiang, Yu-Xiao, Oh, Ji Seop, Hasan, M. Zahid, Neubauer, Kelly J., Gao, Bin, Xie, Yaofeng, Hashimoto, Makoto, Lu, Donghui, Jozwiak, Chris, Bostwick, Aaron, Rotenberg, Eli, Birgeneau, Robert J., Chu, Jiun-Haw, Yi, Ming, Dai, Pengcheng

论文摘要

密切相关的量子材料的标志是由竞争和交织的相结合的相位图产生的丰富相图,几乎是底层态能量。一个众所周知的例子是铜氧化物,其中电荷密度波(CDW)排序良好,并与磁性序列有很强的耦合,以形成旋转电荷分离的条带,以与超导性竞争。最近,相关拓扑材料中也揭示了这种丰富的相图。在由角共享三角形组成的二维kagome晶格中,晶格的几何形状可以产生带有局部电子,非平凡拓扑,手性磁性,超导性和CDW顺序的平坦带。虽然在弱电子相关的非磁性AV3SB5(a = k,rb,cs)中发现了CDW,但尚未在相关的磁有序的Kagome晶格金属中观察到。在这里,我们报告了在抗铁磁(AFM)中发现CDW的kagome lattice fege阶段。 FEGE中的CDW发生在与AV3SB5相同的波形上,增强了AFM有序的力矩,并诱导出现的异常霍尔效应。我们的发现表明,FEGE中的CDW是由电子相关驱动的AFM顺序和范霍夫奇异驱动的不稳定性的结合而产生的,可能与手性通量相有关,与强相关的铜氧化物和镍盐形成鲜明对比,在该铜氧化物和镍含量上,CDW的CDW先前或伴随磁性顺序。

A hallmark of strongly correlated quantum materials is the rich phase diagram resulting from competing and intertwined phases with nearly degenerate ground state energies. A well-known example is the copper oxides, where a charge density wave (CDW) is ordered well above and strongly coupled to the magnetic order to form spin-charge separated stripes that compete with superconductivity. Recently, such rich phase diagrams have also been revealed in correlated topological materials. In two-dimensional kagome lattice metals consisting of corner-sharing triangles, the geometry of the lattice can produce flat bands with localized electrons, non-trivial topology, chiral magnetic order, superconductivity and CDW order. While CDW has been found in weakly electron correlated nonmagnetic AV3Sb5 (A = K, Rb, Cs), it has not yet been observed in correlated magnetic ordered kagome lattice metals. Here we report the discovery of CDW within the antiferromagnetic (AFM) ordered phase of kagome lattice FeGe. The CDW in FeGe occurs at wavevectors identical to that of AV3Sb5, enhances the AFM ordered moment, and induces an emergent anomalous Hall effect. Our findings suggest that CDW in FeGe arises from the combination of electron correlations-driven AFM order and van Hove singularities-driven instability possibly associated with a chiral flux phase, in stark contrast to strongly correlated copper oxides and nickelates, where the CDW precedes or accompanies the magnetic order.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源