论文标题

兴趣驱动的内容创建如何塑造非正式学习的机会:关于新手使用数据结构的案例研究

How Interest-Driven Content Creation Shapes Opportunities for Informal Learning in Scratch: A Case Study on Novices' Use of Data Structures

论文作者

Cheng, Ruijia, Dasgupta, Sayamindu, Hill, Benjamin Mako

论文摘要

通过从头开始的数据分析,我们研究了新手如何通过使用社区生产的学习资源来通过简单的数据结构进行编程。首先,我们提出了一项定性研究,描述了社区生产的学习资源如何创建原型塑造探索的原型,并且可能不利于某些兴趣较少的兴趣。在第二项定量研究中,我们在几个假设检验中发现了对这种动态的广泛支持。我们的发现确定了我们认为的社会反馈循环可以限制灵感来源,构成扩大参与的障碍,并限制学习者对一般概念的理解。最后,我们提出了几种可以减轻这些动态的方法。

Through a mixed-method analysis of data from Scratch, we examine how novices learn to program with simple data structures by using community-produced learning resources. First, we present a qualitative study that describes how community-produced learning resources create archetypes that shape exploration and may disadvantage some with less common interests. In a second quantitative study, we find broad support for this dynamic in several hypothesis tests. Our findings identify a social feedback loop that we argue could limit sources of inspiration, pose barriers to broadening participation, and confine learners' understanding of general concepts. We conclude by suggesting several approaches that may mitigate these dynamics.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源