论文标题

SSD-KD:使用皮肤镜面图像的轻量级皮肤病变分类的自我监管的多样化知识蒸馏方法

SSD-KD: A Self-supervised Diverse Knowledge Distillation Method for Lightweight Skin Lesion Classification Using Dermoscopic Images

论文作者

Wang, Yongwei, Wang, Yuheng, Lee, Tim K., Miao, Chunyan, Wang, Z. Jane

论文摘要

皮肤癌是最常见的恶性肿瘤类型之一,影响了大量人口,并在全球造成了沉重的经济负担。在过去的几年中,由于人工智能的进步,计算机辅助的诊断已经迅速发展,并在医疗保健和医疗实践方面取得了长足进展。但是,大多数在皮肤癌检测中的研究一直在追求高预测准确性,而无需考虑在便携式设备上计算资源的限制。在这种情况下,知识蒸馏(KD)已被证明是一种有效的工具,可以帮助提高有限资源下轻质模型的适应性,同时保持高级代表能力。为了弥合差距,这项研究专门提出了一种称为SSD-KD的新方法,该方法将各种知识统一为皮肤病分类的通用KD框架。我们的方法模型建立了内在关系特征表示,并将其与现有的KD研究集成在一起。双重关系知识蒸馏架构是自修训练的,而加权软化的输出也被利用,以使学生模型能够从教师模型中获取更丰富的知识。为了证明我们方法的有效性,我们对ISIC 2019进行实验,这是皮肤病的大规模开放式基准。实验表明,对于具有最小参数和计算要求的8种不同皮肤疾病的分类任务,我们的蒸馏轻型模型可以达到高达85%的精度。消融研究证实了我们内部和企业中关系知识整合策略的有效性。与最先进的知识蒸馏技术相比,提出的方法证明了大规模皮肤镜数据库中多脉管分类的性能的改善。

Skin cancer is one of the most common types of malignancy, affecting a large population and causing a heavy economic burden worldwide. Over the last few years, computer-aided diagnosis has been rapidly developed and make great progress in healthcare and medical practices due to the advances in artificial intelligence. However, most studies in skin cancer detection keep pursuing high prediction accuracies without considering the limitation of computing resources on portable devices. In this case, knowledge distillation (KD) has been proven as an efficient tool to help improve the adaptability of lightweight models under limited resources, meanwhile keeping a high-level representation capability. To bridge the gap, this study specifically proposes a novel method, termed SSD-KD, that unifies diverse knowledge into a generic KD framework for skin diseases classification. Our method models an intra-instance relational feature representation and integrates it with existing KD research. A dual relational knowledge distillation architecture is self-supervisedly trained while the weighted softened outputs are also exploited to enable the student model to capture richer knowledge from the teacher model. To demonstrate the effectiveness of our method, we conduct experiments on ISIC 2019, a large-scale open-accessed benchmark of skin diseases dermoscopic images. Experiments show that our distilled lightweight model can achieve an accuracy as high as 85% for the classification tasks of 8 different skin diseases with minimal parameters and computing requirements. Ablation studies confirm the effectiveness of our intra- and inter-instance relational knowledge integration strategy. Compared with state-of-the-art knowledge distillation techniques, the proposed method demonstrates improved performances for multi-diseases classification on the large-scale dermoscopy database.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源